خوارزمی نظریهپرداز معادلات درجه دوم
author
Abstract:
محمد بن موسی خوارزمی ریاضیدان بلندآوازة ایرانی در قرن سوم هجری علمی را برای نخستینبار صورتبندی و تدوین کرد که خود آن را «جبر و مقابله» نامید؛ علمی که تمام شرایط یک دانش واقعی را داشت، یعنی همانکه اروپاییان از آن به «ساینس» تعبیر میکنند. این ریاضیدان با استفاده از این دانش نوپا توانست همة معادلات درجه دوم زمانش را حل و راه را برای حل معادلات درجة بالاتر هموار کند. بر اساس الواح بابلی و آثار برجایمانده از محاسبهگران هندی در عهد باستان، مردمان بابل و هند به حل حالات خاصی از معادلات درجه دوم موفق شده بودند، اما آنها راه حلهای خود را فقط به صورت دستور ارائه کردند؛ یعنی این راه حلها، که برای رفع نیازهای زندگی روزمرة آنان ارائه شده بودند و نه به منظور گسترش دانش ریاضی، فاقد براهین علمی بودند. ابتکار خوارزمی در آن است که وی نخست همة معادلات درجه دوم شناختهشدة زمانش را بررسی میکند؛ در مرحلة دوم روش حل هریک از آنها را ارائه میدهد؛ سرانجام در مرحلة سوم، این روشها را با کمک علم هندسه اثبات میکند؛ مؤلفههایی که درمجموع علم جدیدی به نام «جبر» را تشکیل میدهند. این علم، که از طریق ترجمههای لاتینی کتاب خوارزمی در قرون وسطی به اروپا راه یافت، هم در قرون وسطی و هم در عصر رنسانس تحول بزرگی در علم ریاضیات را موجب شد، چنانکه در قرن شانزدهم میلادی تارتاگلیا و کاردان، ریاضیدانان ایتالیایی که با ترجمة لاتینی جبر و مقابله، آشنا بودند روش این ریاضیدان ایرانی را برای حل معادلة درجه سوم تعمیم دادند و بدینترتیب گام دیگری در گسترش ریاضیات برداشتند. در این مقاله کوشیدهایم چگونگی تکوین علم جبر را نشان دهیم و تأثیر آن را در اروپا بررسی کنیم.
similar resources
خوارزمی نظریه پرداز معادلات درجه دوم
محمد بن موسی خوارزمی ریاضی دان بلندآوازة ایرانی در قرن سوم هجری علمی را برای نخستین بار صورت بندی و تدوین کرد که خود آن را «جبر و مقابله» نامید؛ علمی که تمام شرایط یک دانش واقعی را داشت، یعنی همان که اروپاییان از آن به «ساینس» تعبیر میکنند. این ریاضی دان با استفاده از این دانش نوپا توانست همة معادلات درجه دوم زمانش را حل و راه را برای حل معادلات درجة بالاتر هموار کند. بر اساس الواح بابلی...
full textحل معادلات دیفرانسیل-انتگرال جزئی سهموی با توابع پایهای شعاعی گوسی و درجه دوم چندگانه معکوس
This article has no abstract.
full textالصاق های خطی برای دستگاه معادلات دیفرانسیل درجه دوم
در این پایان نامه، ما ساختار یک الصاق خطی را توصیف می کنیم که مربوط به یک میدان معادله ی دیفرانسیل درجه دوم می باشد؛ انحنای آن را محاسبه نموده و راجع به برخی از کاربردها بحث می کنیم.
15 صفحه اولقضایای همگرای برای جواب های معادلات درجه دوم غیرهمگن
در این پایان نامه،ابتدا با فضای هیلبرت آشنا شده وسپس دو نوع معادله دیفرانسیل درجه دوم غیرهمگن را به گونه ای در این فضا معرفی می کنیم که دارای جواب باشند، در ادامه رفتار این جوابها رادر سه فصل مورد بررسی قرار می دهیم. در فصل اول مفاهیم مقدماتی را یادآوری می کنیم . در فصل دوم ابتدا چند منحنی را تعریف کرده و بااستفاده از آنها فضایایی را برای رفتار جواب های داده شده بیان می کنیم که نشان دهنده هم...
My Resources
Journal title
volume 2 issue 4
pages 1- 24
publication date 2013-03-04
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023